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Magnetic thin films exhibit a strong variation in properties depending on their degree of disorder. Recent
coherent x-ray speckle experiments on magnetic films have measured the loss of correlation between configu-
rations at opposite fields and at the same field, upon repeated field cycling. We perform finite temperature
numerical simulations on these systems that provide a comprehensive explanation for the experimental results.
The simulations demonstrate, in accordance with experiments, that the memory of configurations increases
with film disorder. We find that nontrivial microscopic differences exist between the zero field spin configu-
ration obtained by starting from a large positive field and the zero field configuration starting at a large negative
field. This seemingly paradoxical behavior is due to the nature of the vector spin dynamics and is also seen in
the experiments. For low disorder, there is an instability which causes the spontaneous growth of linelike
domains at a critical field, also in accord with experiments. It is this unstable growth, which is highly sensitive
to thermal noise, that is responsible for the small correlation between patterns under repeated cycling. The
domain patterns, hysteresis loops, and memory properties of our simulated systems match remarkably well
with the real experimental systems.
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I. INTRODUCTION

Many magnetic systems have a memory of their past con-
figurations. This history, manifest in the hysteresis loop of a
magnet, has many fascinating features, for example,
Barkhausen noise, which demonstrates that this history has
intricate behavior at a small scale, with avalanches occurring
in the same order in a highly reproducible manner �1–8�.
From a theoretical perspective, a certain class of Ising mod-
els has been proved by Sethna et al. �9� to exhibit perfect
return point memory.1 And of course, hysteresis is the prin-
ciple that makes magnetic storage devices possible �10�.

Primarily due to the technological importance of magnetic
systems, a vast number of experiments have been done to
observe magnetic memory and hysteresis phenomena �10�. A
comparably large number of theories have been made to ex-
plain these experiments with varying degrees of success. A
recent experiment by Pierce et al. �11,12� measured the
memory properties of magnetic multilayer thin films. The
multilayer samples studied were quasi-two-dimensional with
perpendicular anisotropy. They observed an effect that at first
sight appears paradoxical, involving fundamental issues of
symmetry in these systems. In this paper, through numerical
simulations, we attempt to provide an explanation for this
effect.

The experiment by Pierce et al. used the powerful new
tool of x-ray speckle metrology to measure the covariance of
a domain configuration at one field with the configuration at
another field. This measured value is one way to quantify the

amount of “memory” possessed by the material. Measure-
ments were done for Co/Pt multilayer samples with varying
amounts of disorder; the study found that samples with
greater disorder had higher memory than the ordered
samples, which showed no significant amount of memory.
The domain patterns ranged from labyrinthine mazes for low
disorder samples to ones without any noticeable structure for
the highest disorder samples. Hysteresis loops for different
samples had dramatically different features depending on the
amount of disorder, with steep cliffs �large changes in the
magnetization at constant field� existing in the hysteresis
loops of the low disorder samples.

In addition to the memory dependence on disorder, an
unexpected finding was the difference between what Pierce
et al. called “return point memory” �RPM� and “complemen-
tary point memory” �CPM�. RPM was defined by them as the
covariance �see below� between the configuration at a certain
field point and the configuration at the same field point after
an integer number of complete cycles around the major hys-
teresis loop. CPM is defined as the covariance between the
configuration at a certain field point and the configuration at
a half-integer number of field cycles away. Figure 1 shows
examples of “return” and “complementary” points. The co-
variance that we will use in order to define RPM and CPM is

cov�a,b� = �sa�r� · sb�r�� − �sa�r�� · �sb�r�� , �1�

where a and b refer to legs on the hysteresis loop and the
average is over all space �spins�. The normalized covariance
is defined by

� =
cov�a,b�

�cov�a,a�cov�b,b�
. �2�

At a certain external field Be, RPM is defined as
��Be ,a ;Be ,b�, where a and b are legs going in the same
direction �both ascending or both descending�, and CPM is

1The Sethna definition of return point memory refers to systems
that have the property that their spins will return to exactly the same
configuration after an excursion of the external field away from and
then back to its original value. The excursion cannot exceed the
maximum and minimum values that had already been taken by the
field.
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defined as −��Be ,a ;−Be ,b�, where a and b are legs going in
opposite directions. Perfect memory would lead to both RPM
and CPM equal to unity. A covariance between two indepen-
dent systems would approach zero for both RPM and CPM.

The speckle experiment measured intensities from x-ray
scattering. Because scattering experiments probe samples in
Fourier space, the actual measurements did not measure the
covariance as defined by Eq. �1� but instead by

covk�a,b� = ��sa
z�k��2�sb

z�k��2� − ��sa
z�k��2���sb

z�k��2� , �3�

where sa
z�k� is the z component of the Fourier transform of

the spins on leg a and the the average is over wave vectors.2

Using this Fourier space covariance in the definition of RPM
and CPM, Pierce et al. measured the amount of memory for
samples of Co/Pt multilayer thin films with a wide range of
disorder. RPM and CPM are both negligible for samples with
low disorder and are quite significant ��0.6� at the coercive
field, defined in Fig. 1, for highly disordered samples. The
onset of memory occurs quite abruptly as disorder is in-
creased. Furthermore, for samples with significant memory,
RPM is noticeably larger than CPM for all fields measured.
In this paper we will use the real space covariance in the
definition of RPM and CPM.

A viable model of the Co/Pt multilayer films must at the
least be able to explain two experimental results: �1� RPM,
CPM	0 for systems with low disorder; �2� 1�RPM
�CPM for systems with high disorder. In this paper, we
provide a possible explanation for these experimental results
through finite temperature numerical simulations of classical
vector spins. The finite temperature destroys perfect memory
and affects both RPM and CPM. We will see that the nature
of the domains determines how much the temperature affects

the covariance; highly ordered systems are more susceptible
to temperature effects than highly disordered systems, and do
explain result 1. But thermal noise does not discriminate be-
tween the ascending leg and the descending leg. A satisfac-
tory theory must also show that RPM is greater than CPM.

Condition 2 is difficult to understand intuitively. Consider
a system at low temperature that starts out fully saturated
from being in a large positive external field perpendicular to
the film, and then that field is brought down adiabatically to
zero. At remanence the system will be in a state with do-
mains pointing in different directions. Now repeat the same
procedure but starting with a fully saturating field pointing in
the opposite direction. At remanence we now expect the final
configuration to be the same apart from a change in sign s
→−s. The fact that the CPM value is less than the RPM
value contradicts this. The configurations, although some-
what correlated, are different.

One possible explanation of this can be devised by intro-
ducing a term in the Hamiltonian that is not invariant under
spin and external field reversal s→−s and Be→−Be. Terms
in this class automatically introduce a difference between the
ascending and descending legs. A system with such a Hamil-
tonian would exhibit a hysteresis loop that is not symmetric
under the same operations even at zero temperature. Using a
scalar �4 model with a random field term in the Hamiltonian,
Jagla and co-workers �12,13� were able to satisfy both con-
ditions. But the physical origin, and existence, of these ran-
dom fields is unclear. Recently, with some modifications to
the �4 model, including replacing the random fields with
random anisotropy, Jagla �14� was able to produce domain
patterns and hysteresis loops that resemble the experimental
patterns and loops remarkably well. However, without a ran-
dom field term in the Hamiltonian, the memory conditions
could not be satisfied.

We provide a possibly more fundamental mechanism that
satisfies condition 2: The vector dynamics breaks the spin
and field reversal symmetry, thereby reducing CPM and not
RPM. This mechanism does not require any new terms in the
Hamiltonian of the class mentioned in the previous para-
graph. In our earlier work �15�, we showed how the vector
dynamics, governed by the Landau-Lifshitz-Gilbert �LLG�
equation �16�, can give rise to noncomplementary hysteresis
loops for a system of nanomagnetic pillars. The crucial role
of vector dynamics for explaining experimental results un-
derlines the inadequacy of scalar models, even when the sys-
tem is highly anisotropic. We have not excluded the possi-
bility that the real explanation is a combination of the vector
dynamics and the random fields. Furthermore it is possible
that the experiments result from some other effects that have
not been considered so far. In this paper, we use numerical
simulations to demonstrate the plausibility of this vector
mechanism.

In the next section of this paper, the LLG equation is
introduced and the various terms in the Hamiltonian and
their origin will be described. Details of the numerics are
provided in Sec. III and the types of domain patterns and
hysteresis loops from these simulations are presented in Sec.
IV. Section V contains the covariance results.

2The actual experimentally measured quantity differs from Eq. �3�
slightly, because the average intensities depend on k and so the
formula needs to be suitably weighted. See �11,12� for details.

FIG. 1. �Color online� Magnetization vs external field for a car-
toon hysteresis system. Return point memory is defined as the co-
variance between any point and the same point after an integer
number of complete cycles. Complementary points are points lying
a half-integer number of field cycles away. Each pair of points
�filled, shaded, and unfilled� is a pair of complementary points. The
unfilled points are at the positive and negative coercive fields.
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II. CLASSICAL SPIN DYNAMICS AND THE MODEL
HAMILTONIAN

The Landau-Lifshitz-Gilbert equation of motion �16� is
the simplest dynamic equation for classical spins that con-
tains a reactive term and a dissipative term:

ds

dt
= − s � �B − �s � B� , �4�

where s is a microscopic classical spin, B is the local effec-
tive field, and � is a damping coefficient. The effective field
is B=−�H /�s+�, where H is the Hamiltonian and � repre-
sents the effect of thermal noise. The overall constant in front
of the right hand side of Eq. �4� is set to unity.

Both terms on the right hand side of the LLG equation are
necessary to adequately describe the motion of classical
spins. The double cross product in the damping term is nec-
essary in order to maintain a constant magnitude for the
spins. The relaxation time is inversely related to the damping
coefficient. The reactive term describes precession of a spin
about its local effective field and has a quantum mechanical
origin; the commutation relations of angular momentum
variables give rise to the single cross product of the reactive
term. The commutation relation between spin variables is
odd under spin reversal. Later, we will show how precession
is crucial to adequately describe the experimental system us-
ing our Hamiltonian. Because scalar models cannot have pre-
cession, the mechanism that we suggest is not possible in
scalar theories.

The LLG equation can be applied to microscopic spins as
well as coarse grained spins. Every spin variable in the nu-
merics represents a block spin of the multilayer film and the
evolution of all spins is calculated by numerically integrating
the LLG equation. Henceforth in this paper, a “spin” corre-
sponds to a block spin variable. The coefficients of the
Hamiltonian, the damping coefficient, and thermal noise are
also those associated with the coarse grained variables. The
Hamiltonian has four terms: self-anisotropy energy, local fer-
romagnetic interactions, long range dipole-dipole interac-
tions, and the energy for the interactions with the external
field.

The Co/Pt multilayer film is a perpendicular anisotropic
material. We define this perpendicular �out of plane� axis as
the z axis. The origin of the perpendicular easy axis is the
layered structure of the material. Any real material will have
imperfections in the layering, and this imperfection in the
layering is the “disorder” mentioned many times in the pre-
vious section. Samples with low disorder show very well
defined planes separating the layers of the two elements,
whereas samples with high disorder have very rough inter-
faces between the Co and Pt. Due to this disorder in the
layering, each spin has a different easy axis n̂i. The aniso-
tropy energy term is described by

Hani = − �

i

�si · n̂i�2, �5�

where � is a model parameter. The anisotropy must be an
even function due to the symmetry in ±n̂i. Aside from being
even, the functional form of Eq. �5� can be quite complicated

in general, but if a power expansion is possible, Eq. �5� will
be the leading order term.

The next term in the Hamiltonian describes the local fer-
romagnetic coupling between neighboring spins,

HJ = − J

�i,j�

si · s j , �6�

where J is the ferromagnetic coupling constant. We consider
only the J�0 case. Even though we attempt to model a
continuum system, a grid is necessary for the numerics. In
order to minimize artificial effects due to the grid, this real
space ferromagnetic energy term is replaced by a term in
Fourier space of the form

Hel = J

k

k2sk
2 . �7�

Equation �7� is the leading order term of the elastic energy in
Fourier space which aligns spins locally similar to HJ. Dis-
order can be introduced in the elastic constant J as well. For
small disorder of this type, the results presented in this paper
do not change qualitatively. We eliminate this extra disorder
parameter and have a uniform elastic constant for all spins.

In addition to the local interactions, the spins also interact
via a long range dipole-dipole energy. The form of this en-
ergy is the usual classical expression

Hdip = − w 

i,j�i

3�si · eij��eij · s j� − si · s j

rij
3 , �8�

where rij is the displacement vector between spins i and
j , eij is the unit vector along this direction, and w is another
model parameter. When the spins are pointing predominantly
in the ±z directions, the dipolar fields tend to antialign the
spins. This competition with the ferromagnetic interaction
produces many of the domain features. Interestingly, when
the spins are in plane, the dipole-dipole and local interactions
can become cooperative �depending on rij�.

The form of the dipole energy expressed by Eq. �8� is
correct for point dipoles, but must be corrected for the block
spins of interest. The small but finite thickness of the layers
does not significantly change the long range behavior of Eq.
�8�, but it does eliminate the divergence at small separations
�17�. This cutoff is implemented in Fourier space which is a
more computationally efficient basis to calculate long range
dipolar fields. Multiplying a Gaussian of the form
exp�−k2d2 /2� with the Fourier transform of Eq. �8� effec-
tively removes the divergence at large wave vectors while
retaining the original form for small wave vectors. The
model parameter d is the length scale of the cutoff where the
finite thickness of the sample affects the dipolar interaction.

The last term in the Hamiltonian is the energy from the
interaction of the spins with the external field which we take
to be uniform in the z direction,

Hext = − Be

i

si
z. �9�

Major hysteresis loops are simulated by cycling the external
field from a large positive value �past saturation� to a large
negative value and back again. To ensure total saturation we
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reset the value of the spin variables to point completely
along the field direction at the start of each leg in the hyster-
esis loop.

In summary, the full model Hamiltonian has four terms:
anisotropy, ferromagnetic coupling, dipole-dipole interac-
tion, and the external field term as described by Eqs. �5�,
�7�–�9�,

H = Hani + Hel + Hdip + Hext. �10�

The model Hamiltonian is bilinear in the spins si and exter-
nal field Be; therefore it is symmetric under si→−si and Be
→−Be. However, as mentioned above, this symmetry does
not exist for the equation of motion. Under these two opera-
tions, the left hand side of the LLG equation Eq. �4� and the
dissipative term reverse signs, whereas the reactive term
stays unchanged. With the symmetric model Hamiltonian
and using purely relaxational dynamics, in some sense there
would be no way to differentiate between going down the
descending leg or up the ascending leg of the hysteresis loop.
The difference in sign change between the terms of the LLG
equation under spin and field reversal is the mechanism by
which RPM�CPM. When precession is turned off, the co-
variance results presented in Sec. V are no longer valid and
we verified that as expected, RPM�CPM when the tempera-
ture is nonzero and RPM=CPM=1 identically when there is
no thermal noise.

This explanation for why RPM�CPM may become in-
valid when the relaxation time is much smaller than the pre-
cessional period. There is no reason to believe that this is the
case for multilayer thin films. In fact �, the damping coeffi-
cient, which is a measure of the relative importance between
damping and precession, has been measured for NiFe thin
films and found to be approximately 0.01 �18�. This indicates
that the relaxation time is much larger than the precessional
period; thus precession is substantial for some systems. The
damping is found to be enhanced to 	1 for CoCr/Pt
multilayer films �19�. Another experimental study measured
�=0.37 for Co/Pt thin films �20�. For the numerical simula-
tions, we have conservatively set � to unity.

III. NUMERICS

We simulate the multilayer thin film by a two-dimensional
lattice of block vector spins of unit length. Most of the model
parameters are noted in the previous section: the relative
strengths of the coupling constants in the Hamiltonian, � , J,
and w, the dipolar cutoff length d, and the damping coeffi-
cient �. There are two more model parameters, the tempera-
ture, T, and 	, a parameter that controls the variation in the
easy axes n̂i. For each spin, a Gaussian random number is
assigned to each of the three components of the easy axis.
The stacking of the layers in the z direction is the physical
origin of the anisotropy; therefore the easy axis is weighted
in this direction. Multiplying the z component by a weighting
factor 	 and then normalizing the vector gives n̂i. This
weighting factor 	 is inversely related to the amount of dis-
order.

The large number of parameters may at first seem hope-
less from the point of view of prediction because in a seven-

dimensional parameter space almost any curve can likely be
fit. This clearly diminishes the predictive power of a model.
All is not lost, because the behavior described in this paper is
quite robust in many of these parameters. Furthermore there
is agreement, at least at the qualitative level, for all the quan-
tities measured at a fixed value of parameters: the shape of
the hysteresis loops as a function of disorder, the evolution at
low disorder of patterns in the films which have also been
seen experimentally, and the RPM and CPM behavior as a
function of disorder. As we mentioned at the beginning of the
last section, � has been measured in a certain multilayer
system to be 	1 �19�, and we have set it equal to unity for
all simulations. The hysteresis loops and domain configura-
tions are largely independent of �; however, a smaller �
would almost certainly enhance the difference between RPM
and CPM. The dipolar cutoff d determines a length scale of
the domains, and all other parameters are considered with
respect to this length scale. Without loss of generality, we
have set d=4 lattice spacings. Below, we will report results
for different temperature and disorder; therefore T and 	 are
not fixed model parameters. That leaves us with a three-
dimensional parameter space and the task does not seem so
daunting as before.

One may ask that since we are simulating a known ex-
perimental system, why are we not using measured values
for these quantities in our numerics? First, these quantities
are not known for these disordered Co/Pt films. And even if
measured values do exist, the simulations are of coarse
grained spins and not microscopic spins therefore all coeffi-
cients, for example, temperature, magnetic field, and disorder
strength, would change in a highly nontrivial manner. Lat-
tices of sizes 128�128 and 256�256 spins are used in the
simulations. By comparing typical domain sizes in the ex-
perimental systems and our simulations we estimate that
each block spin represents roughly 40 000 real microscopic
spins. Nevertheless, even with only 1282 spins, we are able
to observe behavior quite similar to what is seen in the ex-
periments.

Initially, the easy axes n̂i are independently and randomly
assigned for each spin. The z component is weighted by 	
which sets the amount of disorder; disorder is small when 	
is large and is increased by decreasing 	. The system is
initially saturated in the positive z direction. Starting from a
large positive external field Be

max, the field is adiabatically
decreased to a large negative field −Be

max and the spins are
again saturated. From there, the field is adiabatically in-
creased back to Be

max to finish one complete field cycle.
At zero temperature, adiabatic field cycling is straightfor-

ward: after every field step, the spins evolve in time until the
configuration reaches a local minimum in the energy, and
then the field is changed by another step. With thermal noise,
the adiabatic condition cannot be as stringent as it is at ab-
solute zero. The adiabatic condition becomes nontrivial be-
cause thermal noise is constantly buffeting the spins. The
systems of interest have a large anisotropy with easy axes
weighted in the z direction; therefore the energy minima of
the spins are predominantly in the ±z direction. If the tem-
perature is not too large, it would be unlikely for thermal
noise to be sufficient to knock the spin over the energy bar-
rier to induce a spin flip.
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We use the fact that thermally activated spin flips are
uncommon to construct an adiabatic condition. The spins are
allowed to vary their orientation from the vertical, but if the
z component of any spin changes from greater than a large
threshold value to less than the negative of that same value
�or vice versa�, then the system has not yet satisfied the adia-
batic condition. If spin-flip events do occur, the spins must
be evolved further without changing the field. Every spin has
a magnitude of 1. This threshold value is set to 0.75 for the
results in this paper. Qualitatively similar results are obtained
for slightly different thresholds. In addition to not allowing
large spin flips for the adiabatic condition, the change of the
total magnetization in the z direction, 
M, must also not
change substantially. The condition used is 
M �0.1. The
adiabatic condition is tested after every 100 time steps with
�t=0.025. If the condition is satisfied, the field is changed by
�h=0.0005. Every time the adiabatic condition is not satis-
fied, the number of time steps in between checks is doubled.

The time evolution of the spins follows the LLG equation.
This is done by calculating the effective field for each spin
and then integrating the equations using the fourth order
Runge-Kutta algorithm. The effective field contains a noise
term � with the properties ��a�=0 and �
a

i �t�
b
j �t���

=2�ab�ij��t− t���T / �1+�2� where a ,b are particle labels and
i , j denote the direction component �21�. This Gaussian noise
gives the proper temperature behavior.

Due to the long range nature of the dipolar interaction, all
the spins are coupled together and a real space numerical
integration is O�N2�. Using a fast Fourier transform FFT al-
gorithm, this is reduced to O�N ln N�. Periodic boundary
conditions are used to accommodate the Fourier method, but
the results here should not differ significantly with different
boundary conditions.

The configurations of spins are stored at certain fields and
RPM and CPM as defined in the first section are calculated
between different legs. For efficiency, many legs are run in
parallel. In the next section, the domain patterns and hyster-
esis loops resulting from these numerics are discussed.

IV. DOMAIN PATTERNS AND HYSTERESIS LOOPS

Using the numerics described in the previous section,
qualitatively different configurations and hysteresis loops
arise depending on the parameters described in Sec. II. The
important parameters are the relative strengths between the
interaction terms in the Hamiltonian �� , J, and w�, and the
amount of disorder �characterized by 	�. The coarse graining
introduces difficulties in calculating these parameters from
the microscopic interactions. Furthermore, even a first prin-
ciples calculation of the microscopic interactions is highly
nontrivial. For example, the anisotropy of the spins is be-
lieved to be due to a quantum exchange mechanism between
layers that is not easily calculated or understood. Neverthe-
less, we can proceed by empirically searching through pa-
rameter space to find parameters in which the experimental
results are observed.

In the region of parameter space in which the domain
patterns and hysteresis loops have properties seen in the real
experimental samples, the ferromagnetic coupling J and the

anisotropy strength � are approximately equal, whereas the
dipole-dipole strength w is roughly an order of magnitude
weaker. The competitive nature of these interactions give rise
to interesting domain patterns and hysteresis loops �13,14�. A
strong � tries to keep all spins; pointing out of plane due to
the weighting in the z direction. The positive J tries to main-
tain a local alignment of spins; thus large domains are fa-
vored by this energy term. Though weaker in magnitude per
spin-spin interaction, the dipolar force is long range with an
accumulated effect that competes significantly with the local
couplings.

The amount of disorder in a system is determined by 	,
with a large 	 signifying low disorder. When 	=1, the an-
isotropy energy is spherically symmetric �after averaging
over many spins� and the system is no longer a perpendicular
material. In addition to lowering 	, disorder also weakens the
dipolar strength. Disorder in the real experimental systems
exists in the interface between the Co and Pt layers. When
disorder is large, the interface is highly nonplanar, thus ef-
fectively suppressing the dipolar interaction after coarse
graining. Though this disorder in the interface would most
likely alter the relative strengths of J and �, we remove this
degree of freedom and set J=0.85 and �=0.875 for all sys-
tems.

The low disorder systems have the most interesting do-
main patterns with labyrinthine mazes at remanence. The
systems with the lowest amount of disorder studied have 	
=1000 and w=0.15. For this value of 	, the easy axes n̂i is
almost parallel to ẑ. Starting at positive saturation, the large
J and � keep the spins aligned essentially vertically. But the
dipole-dipole interaction is highly dissatisfied in this con-
figuration. Because of this dissatisfaction, at a relatively high
positive field, one or more small patches will flip.

Once a small “down” domain has formed in a sea of up
spins, the local ferromagnetic interaction causes instabilities
to occur at the boundary of the domain. Due to the ordered
environment around the domain, the instabilities grow into
lines. These configurations are long serpentine configurations
in accordance with the recent experiments on Co/Pt films
and also earlier experimental work �22�. The growth of the
snakes is spontaneous, occurring at constant external field.
Figure 2 shows the formation and growth of the snakes. In
regions of high curvature, occasionally side branches grow
and look very similar to experimental patterns. Due to the
dipolar force, the domains behave as if they repel each other.
This repulsion causes the growth to halt once the length of
the snakes is comparable to the system size and the total area
of negative spins fills a finite fraction of the sample. At this
point, in order for more spins to flip, the field must be low-
ered.

The initial circular instability and subsequent growth oc-
curs for a wide range of temperatures and therefore appears
to be predominantly different from what one would expect if
this was nucleation. If this was nucleation, near the critical
field, domains would appear and disappear with a tempera-
ture dependent probability. Our simulations show that when
a domain flips initially, it remains in that state above the
critical field and never disappears. At the critical field a do-
main will quickly become unstable, even at zero tempera-
ture, and grows into serpentine patterns even with no change
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in applied field. The initial instability often occurs at the
same location upon repeated field cycling which further in-
dicates that this is not nucleation.

The growth of these snakelike domains is similar to what
is seen in ferrofluids �17,23,24�. In that case, however, vol-
ume of fluid is conserved, which means that the volume of
fluid cannot spontaneously increase with external field. How-
ever the general shape of domains is similar, particularly
their long serpentine shape ending with a wider head as
shown by Fig. 2.

The growth at constant field introduces a cliff in the hys-
teresis loop; the growth of the snakes reduces the magneti-
zation abruptly. Hysteresis curves of this type are shown in
the first panel of Fig. 4 below. The end of this large ava-
lanche signifies the point at which the snakes have taken up
the available growth environment and are intertwined. After
this point, the length of the snakes can no longer increase
significantly but the width of the snakes does gradually in-
crease by lowering the external field. Eventually, the field
overcomes the repulsion and the snakes link and form a laby-

rinthine maze. Finally, the field will have a large negative
value that saturates the spin in the negative z direction.

The systems with the highest amount of disorder studied
have 	=2 and w=0.05. With such a low weighting, the easy
axes have large components in the plane that vary greatly
from one spin to the next. Because the n̂i’s no longer have a
large probability of pointing in the z direction and the aniso-
tropy energy is strong, the saturation magnetization is re-
duced. In other words, the spins tend to point along their
easy axes which have larger in-plane components than the
low disorder systems. This reduction of the saturation mag-
netization as disorder is increased is also seen in the experi-
ments. Though the spins are more in plane, the external field
still starts at a large positive value, therefore the z component
of the spins start positive. The weaker dipole coefficient re-
quires more reduction of the field before the dipolar dissat-
isfaction causes a patch to flip; thus the remanent magneti-
zation increases for more disordered systems.

Disorder causes the domains to have a rougher boundary.
This rough edge is due to the more spherical symmetric easy
axes of the spins at and near the edge. Furthermore, the
highly irregular easy axis landscape prevents long snakelike
domains from forming. Therefore, domains cannot grow sig-
nificantly unless the external field is lowered. The stunting of
the domain growth can be seen by a lack of any large ava-
lanches seen in the hysteresis loop.

Figure 3 shows configurations near the coercive field for
systems with increasing disorder. Figure 4 shows the corre-
sponding hysteresis loops for these systems. The configura-
tions and hysteresis plots are for systems with
	=1000,11,4.1,3 and w=0.15,0.105,0.08,0.06 starting from
the upper left to the lower right panels. This sequence of

FIG. 3. Spin configurations at the coercive field for systems with
different amounts of disorder. The systems with the least amount of
disorder are in the top row with the leftmost panel being the least
disordered system. The system with the greatest amount of disorder
is in the lower right panel. The disorder parameters 	 are
1000,11,4.1,3 and the dipole strengths w are 0.15,0.105,0.08,0.06.
The strength of the dipole interaction is effectively suppressed by
disorder as mentioned in the text. The temperature is 10−4.

FIG. 2. Domain growth for a 2562 system with low disorder,
	=1000, and w=0.15. The z component of the spins are shown with
light shades representing “up” and dark shades representing
“down.” The time ordering of the panels is top to bottom first, then
left to right. The first five panels are at constant field and show
snakelike domains growing in time. The labyrinthine patterns re-
semble the domain patterns of the low disorder samples from the
speckle experiments. Eventually, the length of the domains becomes
comparable to the system size and they require a lowering of the
external field to increase in size. The last panel is at a lower external
field than the other five. The temperature is 10−4.
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hysteresis plots shows how the height and slope of the cliff
decreases as disorder increases. At an intermediate amount of
disorder, snakes do grow but not to the extent of the entire
system size. The domain growth is pinned by the disorder
and growth cannot occur until the field is lowered. Eventu-
ally, beyond 	=4.1 and w=0.08, there is no noticeable cliff
in the hysteresis curve. A system with a lower w remains
saturated for a larger range of external field, therefore the
remanent magnetization and the width of the hysteresis loop
increases as w decreases. The disappearance of cliffs in the
hysteresis loops as disorder increases has been seen in ran-
dom field Ising models �25� and continuous scalar models
�14�. Striped domain patterns have also been seen in the
scalar models �13,25�.

The general features of the domain patterns and hysteresis
loops described above are dependent upon the amount of
disorder but are independent of temperature for a wide range
of temperature. However, thermal noise does affect the field
in which the domains initially flip. This effectively narrows
the hysteresis loops as shown in Fig. 5. Another study of
Co/Pt multilayers shows this effect as well �26�. Though
thermal noise does have an effect on the hysteresis loop,
domain creation and growth is not predominantly nucleation.

One can understand this by examining the low disorder
system. Starting from positive saturation, at a critical field,
circular initial domains, and serpentine growth occurs for all
temperatures. At zero temperature nucleation cannot occur,
therefore the zero temperature critical field is analogous to
the spinodal point. When thermal noise is present, it can
cause domains to flip before the spinodal field is reached,
thereby nucleating domains which then grow. Hence at finite
temperature, the cliff occurs at a field larger than the zero

temperature critical field �when all spins are initial saturated
in the positive direction�. But from Fig. 5, we see that this is
not a strong effect. Nucleation only slightly changes the field
in which the cliff occurs and is not the dominant phenom-
enon for domain formation and growth.

The qualitative features described in this section are ob-
served in the experimental samples. In summary, low disor-
der systems have labyrinthine domain patterns and hysteresis
loops with steep cliffs and high disorder systems have irregu-
lar patchy domains and more “standard” hysteresis loops.

V. COVARIANCE RESULTS

As seen in the previous section, the amount of disorder
and dipole strength dictates the type of domain patterns and
hysteresis loops. In this section, we discuss how memory
properties, specifically RPM and CPM, are determined by
the amount of disorder. Though thermal noise did not have a
large effect on the hysteresis loops and domain pattern,
memory properties are highly sensitive to temperature.

At zero temperature, the snakes seen in the domain pat-
terns of the low disorder systems meander due to the small
differences in one direction vs another. These slight differ-
ences are mainly due to the randomness in the easy axes of
the spins. Without thermal noise, every ascending leg will be
identical to the next; a complete field cycle that saturates the
magnet returns the system to exactly the same state. In other
words, RPM is identically equal to unity.

Because the meandering is due to very slight differences
in the local environment of the snake, thermal noise could
alter the domain patterns dramatically. Even when the tem-
perature is low, the domain configurations can be drastically

FIG. 4. �Color online� Hysteresis loops for systems with different amounts of disorder; the vertical axes are the magnetizations and the
horizontal axes are the external fields. The panels correspond to the same system as in Fig. 3. The cliff in the hysteresis curve vanishes as
disorder is increased. The temperature is 10−4. Both magnetization and external field are in arbitrary units throughout this paper.
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different between points separated by an integer number of
complete field cycles. In the second row of Fig. 6, two con-
figurations of a low disorder system are so different that one
could not tell that both panels are the same system separated
by one field cycle. These two configurations both appear, at
least visually, to have domains that are uncorrelated in both
their positions and their shapes.

Of course high disorder systems are also affected by ther-
mal noise. But because these systems are much more hetero-
geneous, a small amount of noise does not cause such drastic
differences. The lack of domain growth at constant field is
due to the orientational disorder. This disorder also ensures
that even for different realizations of thermal noise, the do-
mains form in essentially the same locations with the same
sizes. In other words, the relatively more reproducible
growth of domains is another consequence of pinning by
disorder. Therefore the differences in configurations after a
complete field cycle, shown in the top row of Fig. 6, is not as
drastic as was seen in the low disorder case.

Whereas thermal noise adequately explains return point
differences, explanations of the differences between comple-
mentary points also require a discussion of the dynamics.
When the precession term of the LLG equation is removed,
the behavior of the complementary branch is identical to the
return branch �with s→−s and Be→−Be�. But when preces-

sion is present, even at zero temperature, a configuration at
field B along the ascending branch is not identical �after spin
reversal� to the configuration at field −B along the descend-
ing branch.

As mentioned in the Introduction, RPM and CPM quan-
tify the amount of correlation between configurations. Be-
cause each system is saturated after every leg, RPM and
CPM are independent of the number of intermediate field
cycles. At very low temperatures, the covariance values for
different legs essentially overlap. Figure 7 shows RPM and
CPM plots for a highly disordered system with 	=4.1 and
w=0.08 at a very low temperature T=10−9. RPM is greater
than CPM for most field points and the different RPM legs
lie very close together as do the different CPM legs. This
feature is seen in the experiments.

The effects of temperature on RPM and CPM are shown
for a system with 	=4.1 and w=0.08 in Fig. 8. There are
much larger fluctuations compared to the system in Fig. 7
due to the higher temperature. As expected, these fluctua-
tions are reduced as the system size is increased. The average
is done over many legs and the root mean square deviation is
shown. These figures clearly show that at low temperature
RPM is close to unity whereas CPM is significantly lower.
As temperature increases, RPM decreases as discussed. Cu-
riously, for low temperatures, within errors, CPM is indepen-
dent of temperature. Up to a temperature of 	10−4, the dy-
namics appear to be dominant over temperature in terms of
complementary point memory. This result emphasizes the
importance of the vector dynamics. With RPM, CPM�1 the
amount of memory decreases with field. Far from positive or
negative saturation, both RPM and CPM decrease with field
as is seen in the experiments as well.

FIG. 5. �Color online� Hysteresis loops at different temperatures
for a low disorder system �top, 	=1000,w=0.15� and a high disor-
der system �bottom, 	=4.1,w=0.08�. For both systems, thermal
noise narrows the hysteresis loop. For the low disorder system, on
the descending leg thermal noise causes the cliff to occur at a higher
field. The temperature, like the field, is in arbitrary units.

FIG. 6. Comparisons of the spin configurations after one com-
plete cycle at the coercive field. The configurations on the top row
are from a system with high disorder �	=4.1 and w=0.08�. Notice
the domains have essentially the same shape and are in the same
positions. The bottom two panels are configurations from a system
with low disorder �	=1000 and w=0.15�. There does not appear to
be any obvious correlation between the domains for the low disor-
der system. The temperature is 10−5.
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For a temperature of 10−4, Fig. 9 shows the average RPM
and CPM for two systems with different amounts of disorder.
The low disorder system has no significant amount of
memory near the coercive field. Furthermore, a spike exists
at the critical field where the instabilities initially form. This
spike reveals the fact that the initial domain�s� forms at the
same position after repeated field cycling, hence the large
covariance. RPM and CPM drop off sharply away from this
critical field due to the thermal sensitivity of the domains.
For 	=4.1 and w=0.08 both RPM and CPM are noticeably
above zero at all fields. The general features of the RPM and
CPM plots are related to the features of the hysteresis loops
as seen in Fig. 4; systems with a cliff in the hysteresis loop
have much smaller RPM and CPM than systems with more
standard hysteresis loops.

To more clearly illustrate the relation between disorder
and memory, Fig. 10 contains a plot of RPM and CPM vs
disorder at the coercive field. Disorder is quantified by 1/	.
There is a definite increase in memory as the amount of
disorder is increased. Both RPM and CPM are substantial for
systems with 	�4.1 which corresponds to the point where
the snakes no longer appear in the domain patterns and the
cliff no longer appears in the hysteresis loop. Similarly, the
speckle experiment found that this point is where the amount
of memory is considerable.

VI. CONCLUSIONS

The experiments of Refs. �11,12� contain numerous obser-
vations of the domain patterns, hysteresis loops, and memory
properties of disordered Co/Pt multilayer thin films using a
variety of techniques. In this paper, we have attempted to
understand these results by numerically simulating the ex-
perimental systems. We have provided a plausible explana-
tion for all of the results found and in particular counterin-

tuitive results on memory asymmetry upon field reversal. We
have shown that vector dynamics can be crucial in the
memory property of magnetic spin systems, without which
our model would not be able to explain the experimental
results.

Our simulations contain many of the qualitative features
of the domain patterns and hysteresis loops. The domain pat-
terns for systems with low disorder for both experiment and
simulation are labyrinthine mazes at the coercive field. Fur-
thermore, we observe snakelike growth of the domains
which are responsible for the cliffs seen in the hysteresis
loops in accord with experiment. As the amount of disorder
in the system increases, irregular patches replace the serpen-
tine domain patterns and the cliff in the hysteresis loop dis-
appears. Because these features in the simulation resemble
the features observed in the experiments, we believe the pa-
rameters used in the simulation are close to the actual param-
eters. It would be interesting to further investigate the growth

FIG. 7. �Color online� RPM and CPM vs external field for a 	
=4.1 and w=0.08 system at a very low temperature of 10−9. The
covariance values for four “return” legs �dashed lines� and four
“complementary” legs �solid lines� are plotted. All return legs have
essentially the same covariance. Similarly all complementary legs
have essentially the same covariance. Because the system reaches
saturation at the end of every leg, RPM and CPM are independent
of the number of intermediate field cycles. RPM and CPM are
dimensionless quantities.

FIG. 8. �Color online� RPM and CPM vs external field for a
highly disordered system �	=4.1 and w=0.08� at different tempera-
tures. At very large negative fields, temperature is inversely related
to the height of the lines. The temperatures are T
=0,10−5 ,10−4 ,10−3. RPM and CPM values shown are the mean
values for multiple field cycles with rms error bars. The top panel
shows how RPM is exactly equal to unity for zero temperature and
decreases as temperature increases as expected. Unexpectedly, as
shown in the bottom panel, CPM does not always decrease as tem-
perature increases. In fact, except for the T=10−3 case, CPM is
essentially constant for all other temperatures within errors. Be-
cause CPM is similar between the zero and small temperature cases,
thermal noise is not the dominant cause of loss of complementary
memory.
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instability in the low disorder regime which should be simi-
lar in analysis to the ferrofluid case �17� but without conser-
vation of mass. It would also be interesting to see to what
extent the analysis of the dendrite problem can be carried
over to this case �27–29�.

We have found that how thermal noise affects the differ-
ent domain structures determines how well the system “re-
members.” At finite temperature, the low disorder systems
become uncorrelated much more easily than the high disor-
der systems; disorder tends to pin domains, thereby enabling
the system to remember its past. The covariance behavior of
RPM as disorder is varied in the simulations agree with
much of the results from the experiments.

We are able to explain the seemingly paradoxical experi-
mental result that complementary points appear to “forget”
more than return points despite being governed by a Hamil-
tonian that is invariant upon s→−s and Be→−Be. The non-
invariance of the LLG dynamical equation provides a natural
explanation for this unexpected behavior. Spin precession re-
veals itself by decreasing the correlation between opposite

legs. Because of the importance of precession for certain
physical phenomena, scalar theories are inadequate even for
highly anisotropic materials. From these simulation results,
we show that the dynamic mechanism is able to explain, at
least qualitatively, the observations from the speckle experi-
ments. To make this more quantitative, a better experimental
understanding of the sputtered films is needed.

Prior to this work, Jagla �13,14� produced simulations
with domain patterns and hysteresis loops remarkably similar
to the experimental ones. In the first of his two papers �13�,
Jagla used a long range scalar �4 model and obtained domain
patterns very similar to a large number of different experi-
ments. A �4 theory, however, is not able to reproduce major
hysteresis loops correctly because � grows indefinitely with
applied field.

In his second paper, Jagla �14� used a modified model that
did not allow the indefinite growth of � and therefore can
produce hysteresis curves that saturate. His model Hamil-
tonian contained all the terms used here: dipolar interaction,
local elastic energy, perpendicular anisotropy, and an exter-
nal field term. And like our work, disorder was introduced in
the anisotropy. However, there are two major differences be-
tween Jagla’s model and ours. The first difference is that
Jagla’s model in �14� was at zero temperature and therefore
could not make predictions on the temperature or disorder
dependence of RPM and CPM. The second more important
difference is Jagla’s use of a scalar model vs our vector
model. Obviously, a scalar model cannot have precession;
therefore the mechanism we propose here to explain RPM
�CPM cannot be applied. And since there are no non-
bilinear terms in this model �such as a random field term�,
there is no mechanism for RPM to be unequal to CPM. How-
ever, the scalar model does produce domain patterns and
hysteresis loops similar to experiments.

Jagla also showed that when a small random field term is
included in the Hamiltonian of his original �4 scalar model,
instead of a random anisotropy, RPM is greater than CPM
�12� and the scalar model succeeds in explaining many of the
memory features of the speckle data even with a relatively
small field. But there is as yet no scalar theory that simulta-
neously exhibits domain patterns, hysteresis loops, and

FIG. 10. �Color online� RPM and CPM vs disorder �1/	� at the
coercive point. The squares represent CPM and the circles represent
RPM. The increase in “memory” with disorder is evident. “Disor-
der” is a dimensionless quantity. The temperature is 10−4.

FIG. 9. �Color online� RPM and CPM vs external field for a low
disorder system �top, 	=1000,w=0.15� and a high disorder system
�bottom, 	=4.1,w=0.08�. The squares �red online� represent CPM
and the circles �blue online� represent RPM. The low disorder
sample has both RPM, CPM	0 far away from the saturation field.
At saturation, RPM and CPM are not equal to 1 due to the finite
temperature �10−4�. The peak coincides with the field at which do-
mains initially form and shows that the domains grow from essen-
tially the same location. The bottom plot shows RPM�CPM�0
for fields far from saturation. The decrease in RPM and CPM with
field �for fields far from saturation� is also seen in the experiment
�12�.
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RPM,CPM measurements which matches experiment,
whereas our vector model does exhibit all of these features.
Future experimental work is necessary to determine if the
random fields do exist in these Co/Pt multilayers. Due to the
inherent vector nature of real spins our mechanism should in
principle exist in all systems, though the magnitude of the
effect may be small.

If our explanation turns out to be correct, this also has
strong implications for theory, which has often ignored the
vector nature of the dynamics and used scalar theories such
as Ising models and �4 theories to understand these kinds of
systems. This opens up the possibility that there are other

unexplored consequences of this lack of symmetry of the
dynamical equation.
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